Faure

Description

Faure is a tool for creating automatic lexical analyzers and parsers accepting SLR grammars. The Faure program itself requires Win95 to run, but the tables it generates can be used on any Intel based system. (Or, indeed, any system so long as you make suitable arrangements to read the file from a disk.)

Writing Specifications

A Faure Grammar Specification (FGF) consists of three major sections: the name section, the terminals section and the non-terminals section. The name section simply states the name of the grammar and thus the name of the output files. The format is:

NAME = Identifier ;

In the terminals section you must specify all the terminal symbols which may appear in the grammar. If you wish an automatically generated lexical analyzer, you may start this section with either DEFINITIONS or EXPRESSIONS. A DEFINITIONS sub-section allows you to give mnemonic names to those expressions which will be used in the EXPRESSIONS sub-section, expressions in the DEFINITIONS section will not return tokens at run time. Whether you have a DEFINITIONS sub-section or not, the following definitions are always available in the EXPRESSIONS sub-section:

Identifier�
Expression Recognized�
�
CarriageReturn�
‘\r’�
�
FormFeed�
‘\f’�
�
HorizontalTabe�
‘\t’�
�
NewLine�
‘\n’�
�
WhiteSpace�
‘ ‘ | ‘\r’ | ‘\t’ | ‘\n’ | ‘\f’�
�
AnyChar�
WhiteSpace | [‘ ‘..’~’]�
�
Regular expressions take the same form in both the DEFINITIONS and the EXPRESSIONS sub-sections:

Identifier = RegularExpression ;

An expression consists of strings (sequences of one or more characters delimited by either single or double quotes; you cannot use the delimiter within the string, but you can use the other type of quote), range expressions (two single character strings enclosed in brackets and separated by two dots) which match any single character within the range, or an identifier which was defined in the DEFINITIONS sub-section. You may apply Kleene or positive closure to an expression by using the unary post-fix operators ‘*’ or ‘+’, respectively. Concatenation of two expressions is achieved by using the in-fix operator ‘&’, and you can choose between two expressions with the in-fix operator ‘|’. Parenthesis should be used for grouping.

Each regular expression in the EXPRESSIONS sub-section represents one terminal symbol in the grammar and is assigned a numeric value starting with one. A terminal recognizing the end-of-file symbol is automatically generated by Faure and given the value of zero. (This is necessary for the parser generator.) This is the value returned by the GetNextToken and GetTokenLookahead functions in the LexicalBase class. Note that if two terminals conflict (say the general purpose identifier terminal and a keyword identifier), the one declared first will be recognized. Thus you should declare things like keywords first. (See the complete specification for an example.)

If you do not want an automatically generated lexical analyzer, you must still supply a list of the terminal symbols for the parser generator. Start with the keyword TERMINALS and then list each terminal terminated by a semi-colon. Your lexical-analyzer should assign the first terminal in this list the value of one and continue upward. Once again, terminal number zero is reserved for the end-of-file symbol and your lexical analyzer must return zero when the end of the input stream has been reached.

The non-terminals section consists of the keyword PRODUCTIONS followed by one or more non-terminal definitions. A non-terminal definition takes the following form:

Identifier = IdentifierList { | IdentifierList } [| EMPTY] ;

Where an identifier list is a sequence of identifiers separated by white space. Any identifier in the list which has not already been declared is assumed to be a non-terminal and must appear as such later in the non-terminals section. You must group all the productions for a non-terminal in one definition. Note that only one empty production is allowed and it must be the last production in the definition. Each non-terminal is given a numeric value starting at zero and increasing in order of the definition sequence of the non-terminals. This is the value used in the RecgonizeNonTerminal function called by the ParserBase class.

The editor Faure supplies for working on grammar specifications is just like the Notepad editor and not worth describing. The complete Faure Grammar Specification appears at the end of this document.

Compiling Specifications

To compile a grammar specification, you must first open it and then simply select the compile command from the file menu. Faure will parse the text in the window and report any errors it encounters. If there are no errors, Faure will offer to generate the tables for both the lexical analyzer and the automatic parser as appropriate. (Both procedures, although particularly the former, can be somewhat time consuming. Hence the prompt.) No errors can occur while generating the lexical analyzer, but Faure can determine that a grammar is not SLR(1) while generating the parser tables. In such a case it will do its best to describe the problem.

Testing Specifications

You can test both an automatically generated lexical analyzer and an automatically generated parser from within Faure. Simply select the “test” command from the file menu and the analyzer or parser you wish to test. You will then be prompted for an input file to test the analyzer/parser on and that’s it. Testing a lexical analyzer produces a table consisting of each token value in the file, its lexeme and its position in the file. Testing a parser, which requires that there be a matching lexical analyzer in the same directory on the disk, produces a parse tree if the file was successfully parsed or a message saying that there was a syntax error in the file and giving its position. Since the parser file does not store mnemonic names for each terminal and non-terminal value, all symbols are defined by number. You can, however, edit the labels on the parse tree to something more useful. (Editing the label of a non-terminal node changes all the labels for that non-terminal; editing a terminal node changes only that label.)

Display Tables

If you wish to look at the contents of either a parsing table or a lexical analyzer table, simple select the “display” command from the file menu and tell it which file you wish to look at. For a lexical analyzer each row represents a state and shows which token is accepted at that state and any transitions which occur from that state. (A blank entry indicates that the terminal is accepted on that symbol.) In a parser table each row is again a state. Columns headed by “T:number” (where “number” is an actual numeral) indicate which action should occur when the given terminal number is seen. (Possibilities are “S:number”, which means to execute a shift action, placing the given state on the top of the parsing stack; “R:number1/number2”, which means to reduce non-terminal “number1” with a production of “number2” symbols in length; “accept” which means that parsing has successfully completed; and a blank entry which indicates an error.) The columns of the “goto” table are headed by “NT:number” (where “number” is the number of a non-terminal) and indicate which state to push after the given non-terminal has been reduced.

Using LexicalBase

The LexicalBase class is an abstract class, so you must derive a class from it which supplies the GetNextCharacter and GetCharacterLookahead routines (please see the descriptions in the header file for more information) and initializes the “transition_table” and “state_table” structures. I felt that letting the derived class do the initialization gave the most flexibility with only a minimal cost. (It allows you to store the tables in a file, or as a Windows resource, or you can even hard code the thing if you really want.) Note that LexicalBase automatically calls “delete[]” for the two tables, so be sure to allocate them both with the “new” operator.

Because Fauré using a single character look ahead, it cannot recognize one lexeme common in programming languages: a floating point number (if you have the ‘.’ used elsewhere in the specification). Since this is the only exception I know of, it doesn’t seem unreasonable to make a special case of it. When you derive a class from LexicalBase, over-ride the GetNextToken and GetTokenLookahead members to that when they see a lexeme of the form “digit+ .” and an invalid token value, they remove the trailing ‘.’ from the lexeme (putting it back in the input stream) and change the token value to your token for a number.

Note that, by default, LexicalBase ignores white space before a lexeme but will recognize white space in the middle or at the end of a token. Thus “�lexeme” (where � is a space) would never be recognized but “lexeme�” would be. For the most part I don’t think this should be a problem, but if you do need to recognize leading white space, you may remove the first loop in the GetNextToken function. In this case, you should make a point of defining a terminal which recognizes all white space so that you don’t get a lot of InvalidTokenValue returns.

Using ParserBase

ParserBase, like LexicalBase, requires that you derive a class which supplies initialization and certain routines. There aren’t any tricks to using this class (like the white space one, above) , so please just see the ParserBase.HPP file.

Known Problems

If you type a name into any of the file open/save dialogs, you must specify the extension as well. This is a problem caused by the Optima Component Library and there’s not a thing I can do about it until they come out with the new version.

Sometimes the Windows focus doesn’t end up where you’d expect. Again this is in the component library and beyond my control.

Printing was proving to be a problem, so I stopped trying to implement it after I did the editor window. I’m still waiting to hear back from the Optima people on this.

�
Grammar for Faure

NAME = Faure;

DEFINITIONS

 letter = ['A'..'Z']|['a'..'z'];

 digit = ['0'..'9'];

 DoubleQuoteStringChar = [' '..'!'] | ['#'..'~'];

 SingleQuoteStringChar = [' '..'&'] | ['('..'~'];

EXPRESSIONS

 DefinitionsToken = "DEFINITIONS";

 ExpressionsToken = "EXPRESSIONS";

 ProductionsToken = "PRODUCTIONS";

 TerminalsToken = "TERMINALS";

 EmptyToken = "EMPTY";

 NameToken = "NAME";

 EndToken = "END";

 LiteralCharToken = ("'" & SingleQuoteStringChar & "'") | ('"' & DoubleQuoteStringChar & '"');

 LiteralStringToken = ("'" & SingleQuoteStringChar & SingleQuoteStringChar+ & "'") | ('"' & DoubleQuoteStringChar & DoubleQuoteStringChar+ & '"');

 IdentifierToken = letter & (letter | digit)*;

 BracketRightToken = ']';

 AlternativeToken = '|';

 BracketLeftToken = '[';

 AssignmentToken = '=';

 ParenRightToken = ')';

 TerminatorToken = ';';

 ParenLeftToken = '(';

 PositiveToken = '+';

 ConcatToken = '&';

 KleeneToken = '*';

 RangeToken = "..";

PRODUCTIONS

 Grammar = NameSection TerminalsSection NonTerminalsSection EndToken;

 NameSection = NameToken AssignmentToken IdentifierToken TerminatorToken;

 TerminalsSection = DefinitionsSection ExpressionsSection

 | TerminalsToken IdentifierList

 | ExpressionsSection

 | EMPTY;

 NonTerminalsSection = ProductionsToken ProductionList

 | EMPTY;

 DefinitionsSection = DefinitionsToken ExpressionList;

 ExpressionsSection = ExpressionsToken ExpressionList;

 ProductionList = Production MoreProductions;

 ExpressionList = ExpressionRHS MoreExpressions;

 MoreProductions = Production MoreProductions

 | EMPTY;

 MoreExpressions = ExpressionRHS MoreExpressions

 | EMPTY;

 ExpressionRHS = IdentifierToken AssignmentToken Expression TerminatorToken;

 Production = IdentifierToken AssignmentToken IdentifierList AlternativeProductions TerminatorToken;

 Expression = LiteralStringToken ExpressionTail

 | LiteralCharToken ExpressionTail

 | IdentifierToken ExpressionTail

 | ParenLeftToken Expression ParenRightToken ExpressionTail

 | RangeExpression ExpressionTail;

 AlternativeProductions = AlternativeToken IdentifierList AlternativeProductions

 | AlternativeToken EmptyToken

 | EMPTY;

 ExpressionTail = ConcatToken Expression

 | AlternativeToken Expression

 | KleeneToken ExpressionTail

 | PositiveToken ExpressionTail

 | EMPTY;

RangeExpression = BracketLeftToken LiteralCharToken RangeToken LiteralCharToken BracketRightToken;

 IdentifierList = IdentifierToken IdentifierList

 | IdentifierToken;

END

